
⦁ Google Java Style Guide

⦁ Table of Contents

1 Introduction
1.1 Terminology notes
1.2 Guide notes

2 Source file basics
2.1 File name
2.2 File encoding: UTF-8
2.3 Special characters

3 Source file structure
3.1 License or copyright information, if present
3.2 Package statement
3.3 Import statements
3.4 Class declaration

4 Formatting
4.1 Braces
4.2 Block indentation: +2 spaces
4.3 One statement per line
4.4 Column limit: 100
4.5 Line-wrapping
4.6 Whitespace
4.7 Grouping parentheses: recommended
4.8 Specific constructs

5 Naming
5.1 Rules common to all identifiers
5.2 Rules by identifier type
5.3 Camel case: defined

6 Programming Practices
6.1 @Override: always used
6.2 Caught exceptions: not ignored
6.3 Static members: qualified using class
6.4 Finalizers: not used

7 Javadoc
7.1 Formatting
7.2 The summary fragment
7.3 Where Javadoc is used

⦁ 1 Introduction
This document serves as the complete definition of Google's coding
standards for source code in the Java™ Programming Language. A Java
source file is described as being in Google Style if and only if it adheres
to the rules herein.

Like other programming style guides, the issues covered span not only
aesthetic issues of formatting, but other types of conventions or coding
standards as well. However, this document focuses primarily on the
hard-and-fast rules that we follow universally, and avoids giving advice

1

that isn't clearly enforceable (whether by human or tool).

⦁ 1.1 Terminology notes

In this document, unless otherwise clarified:

⦁ The term class is used inclusively to mean an "ordinary" class, enum
class, interface or annotation type (@interface).

⦁ The term member (of a class) is used inclusively to mean a nested
class, field, method, or constructor; that is, all top-level contents of a
class except initializers and comments.

⦁ The term comment always refers to implementation comments. We
do not use the phrase "documentation comments", instead using the
common term "Javadoc."

Other "terminology notes" will appear occasionally throughout the
document.

⦁ 1.2 Guide notes

Example code in this document is non-normative. That is, while the
examples are in Google Style, they may not illustrate the only stylish way
to represent the code. Optional formatting choices made in examples
should not be enforced as rules.

⦁ 2 Source file basics

⦁ 2.1 File name

The source file name consists of the case-sensitive name of the top-level
class it, plus the .java extension.

⦁ 2.2 File encoding: UTF-8

Source files are encoded in UTF-8.

2

⦁ 2.3 Special characters

2.3.1 Whitespace characters

Aside from the line terminator sequence, the ASCII horizontal space
character (0x20) is the only whitespace character that appears
anywhere in a source file. This implies that:

⦁ All other whitespace characters in string and character literals are
escaped.

⦁ Tab characters are not used for indentation.

2.3.2 Special escape sequences

For any character that has a special escape sequence (\b, \t, \n, \f,
\r, \", \' and \\), that sequence is used rather than the corresponding
octal (e.g. \012) or Unicode (e.g. \u000a) escape.

2.3.3 Non-ASCII characters

For the remaining non-ASCII characters, either the actual Unicode
character (e.g. ∞) or the equivalent Unicode escape (e.g. \u221e) is
used. The choice depends only on which makes the code easier to read
and understand, although Unicode escapes outside string literals and
comments are strongly discouraged.

Tip: In the Unicode escape case, and occasionally even when actual
Unicode characters are used, an explanatory comment can be very
helpful.

Examples:

Example Discussion

String unitAbbrev = "μs"; Best: perfectly clear even without a comment.

3

String unitAbbrev = "\u03bcs"; //
"μs"

Allowed, but there's no reason to do this.

String unitAbbrev = "\u03bcs"; //
Greek letter mu, "s"

Allowed, but awkward and prone to mistakes.

String unitAbbrev = "\u03bcs"; Poor: the reader has no idea what this is.

return '\ufeff' + content; //
byte order mark

Good: use escapes for non-printable
characters, and comment if necessary.

Tip: Never make your code less readable simply out of fear that some
programs might not handle non-ASCII characters properly. If that should
happen, those programs are broken and they must be fixed.

⦁ 3 Source file structure
A source file consists of, in order:

⦁ License or copyright information, if present

⦁ Package statement

⦁ Import statements

⦁ Exactly one top-level class

Exactly one blank line separates each section that is present.

⦁ 3.1 License or copyright information, if present

If license or copyright information belongs in a file, it belongs here.

⦁ 3.2 Package statement

The package statement is not line-wrapped. The column limit (Section
4.4, Column limit: 100) does not apply to package statements.

⦁ 3.3 Import statements

4

3.3.1 No wildcard imports

Wildcard imports, static or otherwise, are not used.

3.3.2 No line-wrapping

Import statements are not line-wrapped. The column limit (Section 4.4,
Column limit: 100) does not apply to import statements.

3.3.3 Ordering and spacing

Imports are ordered as follows:

⦁ All static imports in a single block.

⦁ All non-static imports in a single block.

If there are both static and non-static imports, a single blank line
separates the two blocks. There are no other blank lines between import
statements.

Within each block the imported names appear in ASCII sort order. (Note:
this is not the same as the import statements being in ASCII sort order,
since '.' sorts before ';'.)

3.3.4 No static import for classes

Static import is not used for static nested classes. They are imported with
normal imports.

⦁ 3.4 Class declaration

3.4.1 Exactly one top-level class declaration

Each top-level class resides in a source file of its own.

3.4.2 Ordering of class contents

The order you choose for the members and initializers of your class can
have a great effect on learnability. However, there's no single correct
recipe for how to do it; different classes may order their contents in

5

different ways.

What is important is that each class uses some logical order, which its
maintainer could explain if asked. For example, new methods are not just
habitually added to the end of the class, as that would yield
"chronological by date added" ordering, which is not a logical ordering.

3.4.2.1 Overloads: never split

When a class has multiple constructors, or multiple methods with the
same name, these appear sequentially, with no other code in between
(not even private members).

⦁ 4 Formatting
Terminology Note: block-like construct refers to the body of a class,
method or constructor. Note that, by Section 4.8.3.1 on array initializers,
any array initializer may optionally be treated as if it were a block-like
construct.

⦁ 4.1 Braces

4.1.1 Braces are used where optional

Braces are used with if, else, for, do and while statements, even
when the body is empty or contains only a single statement.

4.1.2 Nonempty blocks: K & R style

Braces follow the Kernighan and Ritchie style ("Egyptian brackets") for
nonempty blocks and block-like constructs:

⦁ No line break before the opening brace.

⦁ Line break after the opening brace.

⦁ Line break before the closing brace.

⦁ Line break after the closing brace, only if that brace terminates a
statement or terminates the body of a method, constructor, or named
class. For example, there is no line break after the brace if it is
followed by else or a comma.

6

Examples:

return () -> {

 while (condition()) {

 method();

 }

};

return new MyClass() {

 @Override public void method() {

 if (condition()) {

 try {

 something();

 } catch (ProblemException e) {

 recover();

7

 }

 } else if (otherCondition()) {

 somethingElse();

 } else {

 lastThing();

 }

 }

};

A few exceptions for enum classes are given in Section 4.8.1, Enum
classes.

4.1.3 Empty blocks: may be concise

An empty block or block-like construct may be in K & R style (as
described in Section 4.1.2). Alternatively, it may be closed immediately
after it is opened, with no characters or line break in between ({}),
unless it is part of a multi-block statement (one that directly contains
multiple blocks: if/else or try/catch/finally).

Examples:

 // This is acceptable

8

 void doNothing() {}

 // This is equally acceptable

 void doNothingElse() {

 }

 // This is not acceptable: No concise empty blocks
in a multi-block statement

 try {

 doSomething();

 } catch (Exception e) {}

⦁ 4.2 Block indentation: +2 spaces

Each time a new block or block-like construct is opened, the indent
increases by two spaces. When the block ends, the indent returns to the
previous indent level. The indent level applies to both code and
comments throughout the block. (See the example in Section 4.1.2,
Nonempty blocks: K & R Style.)

⦁ 4.3 One statement per line

Each statement is followed by a line break.

9

⦁ 4.4 Column limit: 100

Java code has a column limit of 100 characters. A "character" means any
Unicode code point. Except as noted below, any line that would exceed
this limit must be line-wrapped, as explained in Section 4.5, Line-
wrapping.

Each Unicode code point counts as one character, even if its display
width is greater or less. For example, if using fullwidth characters, you
may choose to wrap the line earlier than where this rule strictly requires.

Exceptions:

⦁ Lines where obeying the column limit is not possible (for example, a
long URL in Javadoc, or a long JSNI method reference).

⦁ package and import statements (see Sections 3.2 Package
statement and 3.3 Import statements).

⦁ Command lines in a comment that may be cut-and-pasted into a
shell.

⦁ 4.5 Line-wrapping

Terminology Note: When code that might otherwise legally occupy a
single line is divided into multiple lines, this activity is called line-
wrapping.

There is no comprehensive, deterministic formula showing exactly how to
line-wrap in every situation. Very often there are several valid ways to
line-wrap the same piece of code.

Note: While the typical reason for line-wrapping is to avoid overflowing
the column limit, even code that would in fact fit within the column limit
may be line-wrapped at the author's discretion.

Tip: Extracting a method or local variable may solve the problem without
the need to line-wrap.

4.5.1 Where to break

The prime directive of line-wrapping is: prefer to break at a higher
syntactic level. Also:

⦁ When a line is broken at a non-assignment operator the break comes
before the symbol. (Note that this is not the same practice used in

10

Google style for other languages, such as C++ and JavaScript.)

⦁ This also applies to the following "operator-like" symbols:

⦁ the dot separator (.)

⦁ the two colons of a method reference (::)

⦁ an ampersand in a type bound (<T extends Foo & Bar>)

⦁ a pipe in a catch block (catch (FooException |
BarException e)).

⦁ When a line is broken at an assignment operator the break typically
comes after the symbol, but either way is acceptable.

⦁ This also applies to the "assignment-operator-like" colon in an
enhanced for ("foreach") statement.

⦁ A method or constructor name stays attached to the open
parenthesis (() that follows it.

⦁ A comma (,) stays attached to the token that precedes it.

⦁ A line is never broken adjacent to the arrow in a lambda, except that
a break may come immediately after the arrow if the body of the
lambda consists of a single unbraced expression. Examples:

⦁ MyLambda<String, Long, Object> lambda =

⦁ (String label, Long value, Object obj) -> {

⦁ ...

⦁ };

⦁

⦁ Predicate<String> predicate = str ->

11

 longExpressionInvolving(str);

Note: The primary goal for line wrapping is to have clear code, not
necessarily code that fits in the smallest number of lines.

4.5.2 Indent continuation lines at least +4 spaces

When line-wrapping, each line after the first (each continuation line) is
indented at least +4 from the original line.

When there are multiple continuation lines, indentation may be varied
beyond +4 as desired. In general, two continuation lines use the same
indentation level if and only if they begin with syntactically parallel
elements.

Section 4.6.3 on Horizontal alignment addresses the discouraged
practice of using a variable number of spaces to align certain tokens with
previous lines.

⦁ 4.6 Whitespace

4.6.1 Vertical Whitespace

A single blank line always appears:

⦁ Between consecutive members or initializers of a class: fields,
constructors, methods, nested classes, static initializers, and
instance initializers.

⦁ Exception: A blank line between two consecutive fields (having no
other code between them) is optional. Such blank lines are used as
needed to create logical groupings of fields.

⦁ Exception: Blank lines between enum constants are covered in
Section 4.8.1.

⦁ As required by other sections of this document (such as Section 3,
Source file structure, and Section 3.3, Import statements).

A single blank line may also appear anywhere it improves readability, for
example between statements to organize the code into logical
subsections. A blank line before the first member or initializer, or after the
last member or initializer of the class, is neither encouraged nor
discouraged.

Multiple consecutive blank lines are permitted, but never required (or

12

encouraged).

4.6.2 Horizontal whitespace

Beyond where required by the language or other style rules, and apart
from literals, comments and Javadoc, a single ASCII space also appears
in the following places only.

⦁ Separating any reserved word, such as if, for or catch, from an
open parenthesis (() that follows it on that line

⦁ Separating any reserved word, such as else or catch, from a
closing curly brace (}) that precedes it on that line

⦁ Before any open curly brace ({), with two exceptions:

⦁ @SomeAnnotation({a, b}) (no space is used)

⦁ String[][] x = {{"foo"}}; (no space is required between {{,
by item 8 below)

⦁ On both sides of any binary or ternary operator. This also applies to
the following "operator-like" symbols:

⦁ the ampersand in a conjunctive type bound: <T extends Foo &
Bar>

⦁ the pipe for a catch block that handles multiple exceptions: catch
(FooException | BarException e)

⦁ the colon (:) in an enhanced for ("foreach") statement

⦁ the arrow in a lambda expression: (String str) ->
str.length()

but not

⦁ the two colons (::) of a method reference, which is written like
Object::toString

⦁ the dot separator (.), which is written like object.toString()

⦁ After ,:; or the closing parenthesis ()) of a cast

⦁ On both sides of the double slash (//) that begins an end-of-line
comment. Here, multiple spaces are allowed, but not required.

⦁ Between the type and variable of a declaration: List<String>
list

⦁ Optional just inside both braces of an array initializer

13

⦁ new int[] {5, 6} and new int[] { 5, 6 } are both valid

⦁ Between a type annotation and [] or

This rule is never interpreted as requiring or forbidding additional space
at the start or end of a line; it addresses only interior space.

4.6.3 Horizontal alignment: never required

Terminology Note: Horizontal alignment is the practice of adding a
variable number of additional spaces in your code with the goal of making
certain tokens appear directly below certain other tokens on previous
lines.

This practice is permitted, but is never required by Google Style. It is not
even required to maintain horizontal alignment in places where it was
already used.

Here is an example without alignment, then using alignment:

private int x; // this is fine

private Color color; // this too

private int x; // permitted, but future edits

private Color color; // may leave it unaligned

Tip: Alignment can aid readability, but it creates problems for future
maintenance. Consider a future change that needs to touch just one line.
This change may leave the formerly-pleasing formatting mangled, and
that is allowed. More often it prompts the coder (perhaps you) to adjust
whitespace on nearby lines as well, possibly triggering a cascading
series of reformattings. That one-line change now has a "blast radius."
This can at worst result in pointless busywork, but at best it still corrupts
version history information, slows down reviewers and exacerbates
merge conflicts.

14

⦁ 4.7 Grouping parentheses: recommended

Optional grouping parentheses are omitted only when author and
reviewer agree that there is no reasonable chance the code will be
misinterpreted without them, nor would they have made the code easier
to read. It is not reasonable to assume that every reader has the entire
Java operator precedence table memorized.

⦁ 4.8 Specific constructs

4.8.1 Enum classes

After each comma that follows an enum constant, a line break is optional.
Additional blank lines (usually just one) are also allowed. This is one
possibility:

private enum Answer {

 YES {

 @Override public String toString() {

 return "yes";

 }

 },

 NO,

15

 MAYBE

}

An enum class with no methods and no documentation on its constants
may optionally be formatted as if it were an array initializer (see Section
4.8.3.1 on array initializers).

private enum Suit { CLUBS, HEARTS, SPADES, DIAMONDS }

Since enum classes are classes, all other rules for formatting classes
apply.

4.8.2 Variable declarations

4.8.2.1 One variable per declaration

Every variable declaration (field or local) declares only one variable:
declarations such as int a, b; are not used.

Exception: Multiple variable declarations are acceptable in the header of
a for loop.

4.8.2.2 Declared when needed

Local variables are not habitually declared at the start of their containing
block or block-like construct. Instead, local variables are declared close
to the point they are first used (within reason), to minimize their scope.
Local variable declarations typically have initializers, or are initialized
immediately after declaration.

4.8.3 Arrays

16

4.8.3.1 Array initializers: can be "block-like"

Any array initializer may optionally be formatted as if it were a "block-like
construct." For example, the following are all valid (not an exhaustive
list):

new int[] { new int[] {

 0, 1, 2, 3 0,

} 1,

 2,

new int[] { 3,

 0, 1, }

 2, 3

} new int[]

 {0, 1, 2, 3}

4.8.3.2 No C-style array declarations

The square brackets form a part of the type, not the variable: String[]
args, not String args[].

4.8.4 Switch statements

17

Terminology Note: Inside the braces of a switch block are one or more
statement groups. Each statement group consists of one or more switch
labels (either case FOO: or default:), followed by one or more
statements (or, for the last statement group, zero or more statements).

4.8.4.1 Indentation

As with any other block, the contents of a switch block are indented +2.

After a switch label, there is a line break, and the indentation level is
increased +2, exactly as if a block were being opened. The following
switch label returns to the previous indentation level, as if a block had
been closed.

4.8.4.2 Fall-through: commented

Within a switch block, each statement group either terminates abruptly
(with a break, continue, return or thrown exception), or is marked
with a comment to indicate that execution will or might continue into the
next statement group. Any comment that communicates the idea of fall-
through is sufficient (typically // fall through). This special comment
is not required in the last statement group of the switch block. Example:

switch (input) {

 case 1:

 case 2:

 prepareOneOrTwo();

 // fall through

 case 3:

18

 handleOneTwoOrThree();

 break;

 default:

 handleLargeNumber(input);

}

Notice that no comment is needed after case 1:, only at the end of the
statement group.

4.8.4.3 The default case is present

Each switch statement includes a default statement group, even if it
contains no code.

Exception: A switch statement for an enum type may omit the default
statement group, if it includes explicit cases covering all possible values
of that type. This enables IDEs or other static analysis tools to issue a
warning if any cases were missed.

4.8.5 Annotations

Annotations applying to a class, method or constructor appear
immediately after the documentation block, and each annotation is listed
on a line of its own (that is, one annotation per line). These line breaks do
not constitute line-wrapping (Section 4.5, Line-wrapping), so the
indentation level is not increased. Example:

@Override

@Nullable

19

public String getNameIfPresent() { ... }

Exception: A single parameterless annotation may instead appear
together with the first line of the signature, for example:

@Override public int hashCode() { ... }

Annotations applying to a field also appear immediately after the
documentation block, but in this case, multiple annotations (possibly
parameterized) may be listed on the same line; for example:

@Partial @Mock DataLoader loader;

There are no specific rules for formatting annotations on parameters,
local variables, or types.

4.8.6 Comments

This section addresses implementation comments. Javadoc is addressed
separately in Section 7, Javadoc.

Any line break may be preceded by arbitrary whitespace followed by an
implementation comment. Such a comment renders the line non-blank.

4.8.6.1 Block comment style

Block comments are indented at the same level as the surrounding code.
They may be in /* ... */ style or // ... style. For multi-line /* ...
*/ comments, subsequent lines must start with * aligned with the * on
the previous line.

/*

* This is // And so /* Or you can

* okay. // is this. * even do

20

this. */

*/

Comments are not enclosed in boxes drawn with asterisks or other
characters.

Tip: When writing multi-line comments, use the /* ... */ style if you
want automatic code formatters to re-wrap the lines when necessary
(paragraph-style). Most formatters don't re-wrap lines in // ... style
comment blocks.

4.8.7 Modifiers

Class and member modifiers, when present, appear in the order
recommended by the Java Language Specification:

public protected private abstract default static final
transient volatile synchronized native strictfp

4.8.8 Numeric Literals

long-valued integer literals use an uppercase L suffix, never lowercase
(to avoid confusion with the digit 1). For example, 3000000000L rather
than 3000000000l.

⦁ 5 Naming

⦁ 5.1 Rules common to all identifiers

Identifiers use only ASCII letters and digits, and, in a small number of
cases noted below, underscores. Thus each valid identifier name is
matched by the regular expression \w+ .

In Google Style, special prefixes or suffixes are not used. For example,
these names are not Google Style: name_, mName, s_name and kName.

⦁ 5.2 Rules by identifier type

21

5.2.1 Package names

Package names are all lowercase, with consecutive words simply
concatenated together (no underscores). For example,
com.example.deepspace, not com.example.deepSpace or
com.example.deep_space.

5.2.2 Class names

Class names are written in UpperCamelCase.

Class names are typically nouns or noun phrases. For example,
Character or ImmutableList. Interface names may also be nouns or
noun phrases (for example, List), but may sometimes be adjectives or
adjective phrases instead (for example, Readable).

There are no specific rules or even well-established conventions for
naming annotation types.

Test classes are named starting with the name of the class they are
testing, and ending with Test. For example, HashTest or
HashIntegrationTest.

5.2.3 Method names

Method names are written in lowerCamelCase.

Method names are typically verbs or verb phrases. For example,
sendMessage or stop.

Underscores may appear in JUnit test method names to separate logical
components of the name, with each component written in
lowerCamelCase. One typical pattern is
<methodUnderTest>_<state>, for example pop_emptyStack. There
is no One Correct Way to name test methods.

5.2.4 Constant names

Constant names use CONSTANT_CASE: all uppercase letters, with each
word separated from the next by a single underscore. But what is a
constant, exactly?

Constants are static final fields whose contents are deeply immutable
and whose methods have no detectable side effects. This includes
primitives, Strings, immutable types, and immutable collections of

22

immutable types. If any of the instance's observable state can change, it
is not a constant. Merely intending to never mutate the object is not
enough. Examples:

// Constants

static final int NUMBER = 5;

static final ImmutableList<String> NAMES =
ImmutableList.of("Ed", "Ann");

static final ImmutableMap<String, Integer> AGES =
ImmutableMap.of("Ed", 35, "Ann", 32);

static final Joiner COMMA_JOINER = Joiner.on(','); //
because Joiner is immutable

static final SomeMutableType[] EMPTY_ARRAY = {};

enum SomeEnum { ENUM_CONSTANT }

// Not constants

static String nonFinal = "non-final";

final String nonStatic = "non-static";

static final Set<String> mutableCollection = new

23

HashSet<String>();

static final ImmutableSet<SomeMutableType>
mutableElements = ImmutableSet.of(mutable);

static final ImmutableMap<String, SomeMutableType>
mutableValues =

 ImmutableMap.of("Ed", mutableInstance, "Ann",
mutableInstance2);

static final Logger logger =
Logger.getLogger(MyClass.getName());

static final String[] nonEmptyArray = {"these", "can",
"change"};

These names are typically nouns or noun phrases.

5.2.5 Non-constant field names

Non-constant field names (static or otherwise) are written in
lowerCamelCase.

These names are typically nouns or noun phrases. For example,
computedValues or index.

5.2.6 Parameter names

Parameter names are written in lowerCamelCase.

One-character parameter names in public methods should be avoided.

5.2.7 Local variable names

Local variable names are written in lowerCamelCase.

24

Even when final and immutable, local variables are not considered to be
constants, and should not be styled as constants.

5.2.8 Type variable names

Each type variable is named in one of two styles:

⦁ A single capital letter, optionally followed by a single numeral (such
as E, T, X, T2)

⦁ A name in the form used for classes (see Section 5.2.2, Class
names), followed by the capital letter T (examples: RequestT,
FooBarT).

⦁ 5.3 Camel case: defined

Sometimes there is more than one reasonable way to convert an English
phrase into camel case, such as when acronyms or unusual constructs
like "IPv6" or "iOS" are present. To improve predictability, Google Style
specifies the following (nearly) deterministic scheme.

Beginning with the prose form of the name:

⦁ Convert the phrase to plain ASCII and remove any apostrophes. For
example, "Müller's algorithm" might become "Muellers algorithm".

⦁ Divide this result into words, splitting on spaces and any remaining
punctuation (typically hyphens).

⦁ Recommended: if any word already has a conventional camel-case
appearance in common usage, split this into its constituent parts
(e.g., "AdWords" becomes "ad words"). Note that a word such as
"iOS" is not really in camel case per se; it defies any convention, so
this recommendation does not apply.

⦁ Now lowercase everything (including acronyms), then uppercase
only the first character of:

⦁ ... each word, to yield upper camel case, or

⦁ ... each word except the first, to yield lower camel case

⦁ Finally, join all the words into a single identifier.

Note that the casing of the original words is almost entirely disregarded.
Examples:

Prose form Correct Incorrect

25

"XML HTTP request" XmlHttpRequest XMLHTTPRequest

"new customer ID" newCustomerId newCustomerID

"inner stopwatch" innerStopwatch innerStopWatch

"supports IPv6 on iOS?" supportsIpv6OnIos supportsIPv6OnIOS

"YouTube importer" YouTubeImporter
YoutubeImporter*

*Acceptable, but not recommended.

Note: Some words are ambiguously hyphenated in the English language:
for example "nonempty" and "non-empty" are both correct, so the method
names checkNonempty and checkNonEmpty are likewise both correct.

⦁ 6 Programming Practices

⦁ 6.1 @Override: always used

A method is marked with the @Override annotation whenever it is legal.
This includes a class method overriding a superclass method, a class
method implementing an interface method, and an interface method
respecifying a superinterface method.

Exception: @Override may be omitted when the parent method is
@Deprecated.

⦁ 6.2 Caught exceptions: not ignored

Except as noted below, it is very rarely correct to do nothing in response
to a caught exception. (Typical responses are to log it, or if it is
considered "impossible", rethrow it as an AssertionError.)

When it truly is appropriate to take no action whatsoever in a catch block,
the reason this is justified is explained in a comment.

try {

26

 int i = Integer.parseInt(response);

 return handleNumericResponse(i);

} catch (NumberFormatException ok) {

 // it's not numeric; that's fine, just continue

}

return handleTextResponse(response);

Exception: In tests, a caught exception may be ignored without comment
if its name is or begins with expected. The following is a very common
idiom for ensuring that the code under test does throw an exception of
the expected type, so a comment is unnecessary here.

try {

 emptyStack.pop();

 fail();

} catch (NoSuchElementException expected) {

}

⦁ 6.3 Static members: qualified using class

When a reference to a static class member must be qualified, it is

27

qualified with that class's name, not with a reference or expression of that
class's type.

Foo aFoo = ...;

Foo.aStaticMethod(); // good

aFoo.aStaticMethod(); // bad

somethingThatYieldsAFoo().aStaticMethod(); // very bad

⦁ 6.4 Finalizers: not used

It is extremely rare to override Object.finalize.

Tip: Don't do it. If you absolutely must, first read and understand
Effective Java Item 7, "Avoid Finalizers," very carefully, and then don't do
it.

⦁ 7 Javadoc

⦁ 7.1 Formatting

7.1.1 General form

The basic formatting of Javadoc blocks is as seen in this example:

/**

* Multiple lines of Javadoc text are written here,

28

* wrapped normally...

*/

public int method(String p1) { ... }

... or in this single-line example:

/** An especially short bit of Javadoc. */

The basic form is always acceptable. The single-line form may be
substituted when the entirety of the Javadoc block (including comment
markers) can fit on a single line. Note that this only applies when there
are no block tags such as @return.

7.1.2 Paragraphs

One blank line—that is, a line containing only the aligned leading asterisk
(*)—appears between paragraphs, and before the group of block tags if
present. Each paragraph but the first has <p> immediately before the first
word, with no space after.

7.1.3 Block tags

Any of the standard "block tags" that are used appear in the order
@param, @return, @throws, @deprecated, and these four types never
appear with an empty description. When a block tag doesn't fit on a
single line, continuation lines are indented four (or more) spaces from the
position of the @.

⦁ 7.2 The summary fragment

Each Javadoc block begins with a brief summary fragment. This
fragment is very important: it is the only part of the text that appears in
certain contexts such as class and method indexes.

This is a fragment—a noun phrase or verb phrase, not a complete
sentence. It does not begin with A {@code Foo} is a..., or This
method returns..., nor does it form a complete imperative sentence
like Save the record.. However, the fragment is capitalized and

29

punctuated as if it were a complete sentence.

Tip: A common mistake is to write simple Javadoc in the form /**
@return the customer ID */. This is incorrect, and should be
changed to /** Returns the customer ID. */.

⦁ 7.3 Where Javadoc is used

At the minimum, Javadoc is present for every public class, and every
public or protected member of such a class, with a few exceptions
noted below.

Additional Javadoc content may also be present, as explained in Section
7.3.4, Non-required Javadoc.

7.3.1 Exception: self-explanatory methods

Javadoc is optional for "simple, obvious" methods like getFoo, in cases
where there really and truly is nothing else worthwhile to say but "Returns
the foo".

Important: it is not appropriate to cite this exception to justify omitting
relevant information that a typical reader might need to know. For
example, for a method named getCanonicalName, don't omit its
documentation (with the rationale that it would say only /** Returns
the canonical name. */) if a typical reader may have no idea what
the term "canonical name" means!

7.3.2 Exception: overrides

Javadoc is not always present on a method that overrides a supertype
method.

7.3.4 Non-required Javadoc

Other classes and members have Javadoc as needed or desired.

Whenever an implementation comment would be used to define the
overall purpose or behavior of a class or member, that comment is written
as Javadoc instead (using /**).

Non-required Javadoc is not strictly required to follow the formatting rules of
Sections 7.1.2, 7.1.3, and 7.2, though it is of course recommended.

30

